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1. Introduction

Let M be a connected Kaehlerian manifold of complex dimension »n
covered by a system of real coordinate neighborhoods { U; x*}, where, here
and in the sequel the indices 4, i, j, k, . . . run over the range {1,2, ..., 2n},
and let g, F*, {*.}, V., K;”, K, and K be the Hermitian metric tensor, the
complex structure tensor, the Christoffel symbols formed with g;, the opera-
tor of covariant differentiation with respect to {;*;}, the curvature tensor, the
Ricci tensor and the scalar curvature of M respectively. _

A vector field v* is called a holomorphically projective (or H-projective, for

brevity) vector field {1], [2], [5] if it satisfies
(1) £ jhi} =Vjvivh + kakjih = pjaih + P."Sj’l - pst"S‘F;'h - P:Esli'h

for a certain covariant vector field p; on M called the associated covariant
vector field of v* where £, denotes the operator of Lie derivation with
respect to v*. In particular, if p; is the zero-vector field, then v* is called an
affine vector field.

When we refer in the sequel to an H-projective vector field v*, we always
mean by p; the associated covariant vector field appearing in (1.1).

In the present paper, we first prove a series of integral inequalities in a
Kaehlerian manifold with constant scalar curvature admitting an H-projec-
tive vector field, and then find necessary and sufficient conditions for such a
Kaehlerian manifold to be isometric to a complex projective space with
Fubini-Study metric.

In the seque], we need the following theorem due to Obata [4]. (See also
31

Theorem A. Let M be a complete connected and simply connected
Kaehlerian manifold. In order for M to admit a nontrivial solution ¢ of a system
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of partial differential equations

c
(12)  V,Vig, + 72084 + 9iga + ®igi — FuFi' —

with a constant ¢ > 0, where ¢, =V,p and

3p) = 0

F; = F}‘g,,., it is necessary and

sufficient that M be isometric to a complex projective space CP" with Fubini-
Study metric and of constant holomorphic sectional curvature c.
We assume in this paper that the Kaehlerian manifold under consideration

is connected.

2. Preliminaries

Let M be a Kaehlerian manifold of complex dimension n. The complex
structure tensor F;* and the Hermitian metric tensor g;; satisfy

2.1 F,."IZ." 8" v; FF=0,V Fy =
(22) F'g, + Fg, =0.
(2.2) is equivalent to
(23) g: — FjFg, = 0.

We have [5], for the curvature tensor K",
24 F, "Kkj,’ - F’Kkﬂ" =0,
or equivalently
(2-5) Kkjih + F}’F;thj:s =0,
(2.6) F, Kkjls + F;'sKlg'sh =0,
or
@7 Kijin — E-IF;.SK@; =0,
Where Kkjlh Kkjl 8-

Using (2.4) and the identity

Kkl' lk] + Kjikh = O,

we obtain

MY = g“FK; = FUK,) = LF(Ky! — K ) =

0,

1
_'iF ”Ktsih’

where g’* are contravariant components of g; and F* = g"F/, that i,

28 FIK: = —3FUKy",
from which it follows that
(2.9 FK,, = —3 F9K,,
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For the Ricci tensor K,

(i» from (2.8) we have

(2.10) FK} ~ FKs =0,

or equivalently

(2.11) K+ F'F!(:=0.

Similarly, from (2.9) we have

(2.12) FK; + FK, =0,

or equivalently

(2.13) K; — F'FK, = 0.
A vector field u* on M is said to be contravariant analvtic if

(2.19) FV, + FVu =0,

or equivalently

(2.15) V,u, — F'F'V,u =0,

where u, = g, u”. Since

LR = -F'Vu" + F'Vau’ = — (F/Vu + F/Vu)g™,
a vector field «* on M is contravariant analytic if and only if
(2.16) L F'=0

holds, where £, denotes the operator of Lie derivation with respect to u*. It is
known [5] that if M is compact, then a necessary and sufficient condition for
a vector field u* on M to be contravariant analytic is that

(2.17) ViVu* + Kl =0
holds, where V/ = g/'V,. .
For an H-projective vector field v* on M defined by (1.1), we have
(2.18) V,Voo' = 2(n + 1)p,
(2.19) V¥V ok + KMo = 0.
(2.18) shows that the associated covariant vector field p; is gradient. Putting
1

T —em— s
(2:20) p D) Vv
we have
(2.21) : p; =Vp.

If an H-projective vector field v* on M is contravariant analytic, then
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substituting (1.1) in the well-known formula [5], [6]
CoKys® =Vilo{,":} — V,L{4"}
and using a straightforward computation we find
(2.22) oKy = —80V.p, + 8!V p, + (FV,p, — F'V,p,)F?
+ (Fkaij - F}svkpx)Fih,
from which by contracting with respect to 4 and k we obtain
(2.23) L.K; = —2nVp, — 2E'FV p_.
A Kaehlerian manifold M has the constant holomorphic sectional curva-
ture k if and only if

k
@29 Ky =7 (%8 — 85y + B'Fy — F'F; — 2F,F).
We define tensor fields G; and Z,;* on M by
K
(2.25) G: =K, — > B
K
(2.26) ijih = Klg'ih - m(%&: - 8jhgki + F, khF}i

— E'F; — 2F, kjFih)
respectively. We then easily see that the tensor fields G; and Zkﬁ" satisfy

2.27) G; = Gy, Gj,.gj" =, Z,ﬁ' = Gﬁ,
(2~28) ijx‘h = ~Lijkins ijih = Zihkj’
(2'29) ijih + Zikjh + ij‘kh =0,

where Z,;,, = Z,;’g,,. If G, = 0, then M is a Kaehler-Einstein manifold and
K is a constant provided » > 1; if Z,;* = 0, then M is of constant holomor-
phic sectional curvature K/n(n + 1) provided n > 1.

3. Lemmas
In this section, we prove some lemmas which we need in the next section.
Lemma 1. If an H-projective vector field v* on a Kaehlerian manifold M of
complex dimension n > 1 is contravariant analytic, then the associated vector
field p* is also contravariant analytic, and
(3.1 LK = -2(n + I)Vjpi,

where p* = p,g™.
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Proof. Applying the operator £, of Lie derivation with respect to v* to
both sides of (2.13) and using £, F* = 0, we have

B K; = FF LK,

v Vi v s
from which together with (2.23) we see that p* is contravariant analytic and
(3.1) holds.

Lemma 2. If a Kaehlerian manifold M is compact, then an H-projective
vector field v* on M is contravariant analytic, and consequently £, FF = 0.
Moreover, if n > 1, then the associated vector field p” is contravariant analytic.

Proof of this lemma is easy and therefore omitted.

Lemma 3. For a contravariant analytic H-projective vector field v* on a
Kaehlerian manifold M with constant scalar curvature K of complex dimension
n > 1, we have

(32) Be G = -V,w; — Viw,
where we have put
K
B _ hy B »
(33) wt=(n+1)p* + 20

and w;, = g,w". _
Proof. This follows from (2.25), (3.1) and the fact that p; is gradient, that

is, p; = Vjp.

Lemma 4. For an H-projective vector field v* on a compact Kaehlerian
manifold M, we have

1
(3.4) fM oV =5y fM p.fdv

for any real function f on M, where dV denotes the volume element of M, and p
is the function defined by (2.20).

Proof. This follows from (2.20) and
0=| V(fe')av = o dv+ V.fdv.
J, v av = fv a7,

Lemma S. In a compact Kaehlerian manifold M, we have

fM Lok dV = fM Eonf AV = [ (1)(V'h) ¥
(3.5) a
= —foAh dv = -fM hAf dV
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for any real functions f and h on M, where £, denotes the operator of Lie
derivation with respect to the vector field V'f, and A = g"V V.
Proof. This follows from

0= fM V(fVh) dV = fM(VJ)(vfh) dv + fM fAR av,

0= fM V(hV¥) dv = fM(v,.h)(v"f) dv + fM hAf dV.

Lemma 6. If, in a compact Kaehlerian manifold M, a nonconstant function
@ satisfies

¢
(36) V,Vip, + z(zq’jgih + 9.8, + 98 — F;F’e, — FFp) =0,

where @, =V,@, ¢ being a real constant, then the constant c¢ is necessarily
positive.
Proof. Transvecting (3.6) with g, we have

VAp + (n + 1)cg; = 0,
from which and Lemma 5 it follows that

1

. _ R _ 1 2
¢ fM o dV = - —— fM(Vqu))qaf v =— fM(Aq;) v,

where ¢/ = g/gp,. Since ¢ is a nonconstant function, two inequalities
[ g#av >0, [ (agfav >0
M M

hold, and consequently C is necessarily positive.

Lemma 7. If a Kaehlerian manifold M with constant scalar curvature K
admits an H-projective vector field v*, and the vector field w" defined by (3.3) is
a Killing vector field, then the associated covariant vector field p; satisfies

37 VY + (20,84 + 0:8n + oa8i — EiF'p, — FpFp,) = 0.

__K
4n(n + 1)

Moreover, if M is complete and simply connected, K is positive and v" is

non-affine, then M is isometric to a complex projective space CP" with
Fubini-Study metric of constant holomorphic sectional curvature K/ n(n + 1).
Proof. By using (1.1) we have

(3.8)  Vi(Viv, + Vuv) = 20,84 + o8 + 018 — FiFi’e, — E,Ffp,.
If w” is a Killing vector field, then
Vow, + V,w, =0
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holds, and consequently
2(n + 1)V,p, + %(V,.o,, + V,0,) =0,

which together with (3.8) implies (3.7). The second part of the lemma follows
from Theorem A.

Remark. Using Lemma 6 we see that in Lemma 7 if M is compact, then
we can remove the positiveness of the scalar curvature K.

In the following Lemmas 8, . . ., 15, M is a compact Kaehlerian manifold
of complex dimension » > 1 with constant scalar curvature K, and v” is an
H-projective vector field on M.

Lemma 8. For a vector field v" on M we have

(3.9) fM(ij,. + VW) (VW' + Viwi) dV =2 fM(V,w')" av.

Proof. By using a well-known integral formula [5], [6] on a compact
orientable Riemannian manifold, we have

. ; _ 2
fM(V’ij" + Kw')w, dv fM(V,w') av

+ % fM(ij,. + Vw) (VW' + Viwd) dV = 0.
On the other hand, by Lemma 2 the associated vector field p* is con-
travariant analytic and hence satisfies
V/V0* + Kp' = 0.
Consequently (3.9) follows immediately from (2.19) and the above relations

since K is a constant.
Lemma 9. For a vector field v* on M we have

(3.10) fM Goiw' dV = f (V;w, + Vw)(Viw' + Vin) av.

4(n +1)

Proof. From Lemma 2, the associated vector field p” is contravariant
analytic and hence satisfies

ViVl + Kj'p’ =0,
from which and the equality
V.V,pi=VV, p’
we find
V.Vio'=-2K;p'



88 K. YANO & H. HIRAMATU

Using the above equation, (2.18), (2.25), (3.3) and Lemma 8, we have
. 1 . K ;
., dV = —~= V.V.oilw! —_— V.V o wi

f Gp'w 3 (V.V,p")w' av an(n l)f( Voo )whdv

1 : 1 2
- V.V wwi —_-— t
T fM( YV w)wi dv D fM(v,w) dv
1 . .
= ——— Vow + V. )(Vw! .
TEES) fM( W+ ,wj)(Vw + Vw/) dV.
Lemma 10. For a vector field v* on M we have

[ ele6)e]ar

3.11 G.olp' dV + ——————
(-1 fM PP 8n(n + 1)

Proof. From (2.25) and (3.3), we have
i — i K i i
(3.12) [M Guow' dV = (n + 1) [M Gulo' ¥ + 5 [ Gupo! av.
On the other hand, using the identities G;g” = 0 and
n—
2n

: 1
(3.13) VG, = V.K =0,

and integrating

V/(pGv') = Guo'v' + %pGﬁ(Vjv" + Viv)

]

i1 ji
= Gup + wjo' — 5pGL,g’
o1 "
= Guo'v' + Ep(Bv(;ji)gJ
over M, we find
foud _ 1 i
S, Gt v = —3 [ o(8,Gy)s" a¥,
which implies, in consequence of Lemma 4,
. 1 .
. ! = ——— gt | dV.
(3.14) J, 6o v = g [ Bl (5,68

By (3.10), (3.12) and (3.14), we readily obtain (3.11).
Lemma 11. For a vector field v* on M we have

(3.15) fM(Vva G)w' dv = % fM(vjw,. + Vo) (Viw' + Viw)) dv.
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Proof. Integrating

v (8,G)w'] = (V/B,G)w' + 5 ( o Gi) (VW' + Vi)

v i
over M and using (3.2), we obtain (3.15).
Lemma 12. For a vector field v* on M we have

J, 89RV.GIw v
(3.16) i o o
~3GTD fM(v,.w,. + VW )(Viw' + Viw) av.
Proof. Substituting (1.1) in the well-known formula [5], [6]
£.ViGi =Vie Gy — Guo {5} — Gufo{s’))
and using F,,G¥ = 0 and
F*G; + F'G,, =0,
which follows from (2.2), (2.12) and (2.25), we have
gYL. VG = g¥V,L,G; — 2Gyp/,
and therefore

[ e CTGw v = [ (VE,Gw' av —2[ G av.

(3.16) follows from (3.10), (3.15) and the above relation.
Lemma 13. For a vector field v* on M we have

@17 [ &[(8,G)6"]av = f (Vw; + Vow)(Vw' + V) dV.
M
Proof. Using (3.2) and (3.13) we have
Vj(pGﬁwi) = Gjipjwi - P( v jx)GJ‘

Integrating this over M and using Lemmas 4 and 9, we arrive at (3.17)
immediately.

Lemma 14, For a contravariant analytic vector field o* on M we have

(3.18) (B,Z,)g" = -— I(ka + Vi) — a,:'v wi,

(3.19) (8.24")Z"% = 3 1 378G
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Proof. Using (2.16), (2.22) and (2.26), we have
szlg'ih = -8 Vp, + ‘thVkPi + Fkh(VjPS)FiJ
— BNV )F + F(Vip)F! — E (Vi) F!

K

h h h
~rin Ty L B8 — 8Bt + FOE B,
_P}th: 08si — ZFkS(Bogsj)Eh]'

Using this relation, (2.1),- - -, (2.13), (2.25), (2.26), Lemma 3 and con-
travariant analyticity of v* and p#, we obtain (3.18) and (3.19) by a straight-
forward computation.

Lemma 15. For a vector field v* on M we have

[ ef(e.zy)z",] av
M

4
n+1

(3:20)

fM(vjw,. + Vo )(Viw' + Vind) av.

Proof. This follows from (3.17) and (3.19).

4. Propositions
In this section, we prove a series of integral inequalities and obtain
necessary and sufficient conditions for a Kaehlerian manifold to be isometric
to a complex projective space.
Proposition 1. A4 complete simply connected Kaehlerian manifold M of
complex dimension n > 1 with positive constant scalar curvature K admits a
nonaffine and contravariant analytic H-projective vector field v* such that

(4.1) £.G, =0,

v

if and only if M is isometric to a complex projective space CP" with Fubini-
Study metric and of constant holomorphic sectional curvature K/n(n + 1).

Proof. This follows from Lemmas 3 and 7.

Remark. In Proposition 1 if Af is further compact, then by Lemmas 2 and
6 we can remove the contravariant analyticity of H-projective vector field v*
and the positiveness of scalar curvature K. The same remark applies to the
following Proposition 2.

Proposition 2. A4 complete simply connected Kaehlerian manifold M of
complex dimension n > 1 with positive constant scalar curvature K admits a
nonaffine and contravariant analytic H-projective vector field v" such that

(42) £, Z* =0,
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if and only if M is isometric to a complex projective space CP" with Fubini-

Study metric-and of constant holomorphic sectional curvature K/n(n + 1).
Proof. 1f (4.2) holds, then from (3.18) we have V,w’ = 0 and hence whisa

Killing vector field. Consequently the proposition follows from Lemma 7.
Remark. In Proposition 2, (4.2) can be replaced by

(4.3) (Bv ijih)gj "=0.

In the following Propositions 3, - - - , 8, we suppose that a compact Kach-
lerian manifold M of complex dimension » > 1 with constant scalar curva-
ture K admits an H-projective vector field o*.

Propesition 3. For M we have

(4.4) fM Go'w' dV >0,

where w' is defined by (3.3). Assume moreover that M is simply connected and
o" is nonaffine, then the equality in (4.4) holds if and only if M is isometric to a
complex projective space CP* with Fubini-Study metric and of constant holo-
morphic sectional curvature K/n(n + 1).

Proof. This follows from Lemmas 7 and 9.

Proposition 4. For M we have

K

49 [ o LT

fM £.[(2,G,)e] av > 0.
Assume moreover that M is simply connected and v" is nonaffine, then the
equality in (4.5) holds if and only if M is isometric to a complex projective space
CP" with Fubini-Study metric and of constant holomorphic sectional curvature
K/n(n + 1).
Proof. This is an immediate consequence of Lemmas 7 and 10.
Proposition S. For M we have

(4.6) f (VB G)w' dV > 0,
M

where w' is defined by (3.3). Assume moreover that M is simply connected and
o* is nonaffine, then the equality in (4.6) holds if and only if M is isometric to a
complex projective space CP" with Fubini-Study metric and of constant holo-
morphic sectional curvature K/ n(n + 1).

Proof. This follows from Lemmas 7 and 11.

Proposition 6. For M we have

4.7) J @I Gw av >0,
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where w' is defined by (3.3). Assume moreover that M is simply connected and
v* is nonaffine, then the equality in (4.7) holds if and only if M is isometric to a
complex projective space CP" with Fubini-Study metric and of constant holo-
morphic sectional curvature K/n(n + 1).
Proof. This is an immediate consequence of Lemmas 7 and 12.
Proposition 7. For M we have

(4.8) fM £ {(E,G,)G"} aV < 0.

Assume moreover that M is simply connected and v* is nonaffine, then the
equality in (4.8) holds if and only if M is isometric to a complex projective space
CP” with Fubini-Study metric and of constant holomorphic sectional curvature
K/n(n + 1).
Proof. This is an immediate consequence of Lemmas 7 and 13.
Proposition 8. For M we have

(4.9) fM L A(E.Zg")Z%,} av < 0.

Assume moreover that M is simply connected and v" is nonaffine, then the
equality in (4.9) holds if and only if M is isometric to a complex projective space
CP” with Fubini-Study metric and of constant holomorphic sectional curvature
K/n(n + 1).

Proof. This follows from Lemmas 7 and 15.
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